Freshwater Flow:
The missing element in the Bay Delta Conservation Plan

JONATHAN ROSENFIELD, PH.D.
CONSERVATION BIOLOGIST

The Bay Institute
The Bay-Delta’s Imperiled Public Trust Fisheries

Species at or near all-time low abundances:

- Four unique Chinook salmon populations
- Central Valley steelhead
- Green sturgeon
- Delta smelt
- Longfin smelt
- Striped bass (YOY)
- Steelhead
- Shrimp and other prey species
Bay-Delta’s Public Trust Fisheries:
Parallel, Long-Term, Catastrophic Declines

LONGFIN SMELT
1967-2011

Delta Smelt
1967-2011

Winter-Run Chinook
1970-2010

Striped Bass Age 0
1967 - 2011
Decline of San Joaquin River Fall Run Chinook salmon

San Joaquin River Estimated Natural Production

'Doubling goal 78,000

'SJF Production

'52-'66
45,190

'67-'91
38,130

'92-'10
19,365

Production (x1000)

0 20 40 60 80 100 120
Bay-Delta Conservation Plan (BDCP)

Water exporter initiative to address:

- **Entrainment**: Build new water diversion w/ improved fish screening technology
- **Shallow Habitat**: Restore thousands of acres of tidal wetlands

In return for:
- 50 year ESA take permit
Bay-Delta Conservation Plan

Must

• Contribute to recovery of:
 • 12 fish species,
 • 23 terrestrial vertebrates,
 • 19 plant species, &
 • 7 invertebrates

• Improve *reliability* of water supply

Assumes:

• New diversion eliminates “entainment” problems

• Habitat restoration *more than compensates* for increased diversions
Restore Shallow Water Habitats
Only ~5% of historical wetlands and riparian habitat remains
Resolve Entrainment Problems

Location and Operation of South Delta Water Export Facilities are Problematic

- Abundance Effects
- Life History Diversity Erosion
- Habitat Destruction
- Loss of Productivity
Entrainment as a Multi-faceted Problem

Abundance Impacts

Measured fish “salvage” \(>9 \times 10^6\) fish/yr at South Delta exports facilities

Actual mortality may be \(>100x\) measured
Entrainment as a Multi-faceted Problem

Habitat Destruction
Entrainment as a Multi-faceted Problem

Productivity Impacts

~three 50’ boxcars worth of water (& food) exported every second

“Water export from the Sacramento-San Joaquin Delta is a direct source of mortality to fish... and export plus within-Delta depletion alters system energetics of an already low-productivity ecosystem by removing phytoplankton biomass equivalent to 30% of Delta primary production.” [Cloern and Jassby 2012].
Changing Location of Diversion + Habitat Restoration do not Address the Bay-Delta’s Biggest Problem

Declining Freshwater Flow
Bay-Delta Subjected to Persistent, Severe Drought
Dramatic Change in Frequency of Wet vs. Catastrophically Dry Years

Hydrology Since 1967

<table>
<thead>
<tr>
<th>Yr Type</th>
<th>Unimpaired</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Super-Critical</td>
<td>1</td>
<td>17</td>
</tr>
</tbody>
</table>

Water Year Type Classifications

- ~20% exceedence categories
- “Super Critical” (SC) = 97.5% exceedence
Delta outflows drive species abundance & ecosystem processes
Delta outflows drive species abundance & ecosystem processes

Starry Flounder Abundance vs. Delta Outflow

- Log (Abundance); Bay Study Index + 10
- Log (Spring Delta Outflow); Mar - Jun, Mlm³

- Blue circles: Abundance 1980 - 1987
- Red triangles: Abundance 1988-2011
Delta outflows drive species abundance & ecosystem processes

LONGFIN SMELT VS. DELTA OUTFLOW

- Log (Abundance) vs. FMWT Index
- Abundance 1967-1987
- Abundance 1988-2011

Log (Net Delta Spring Outflow); Mar-May, TAF
San Joaquin Salmon and Flows
A shared history of decline

San Joaquin River Natural Chinook Salmon Production vs. Vernalis Flow

Doubling goal 78,000

'67-'91 38,130

'92-'10 19,365

A shared history of decline
What do these declining Delta species have in common?

<table>
<thead>
<tr>
<th>Species</th>
<th>Native?</th>
<th>Life span (years)</th>
<th>Resident/Migratory?</th>
<th>Spawns Where?</th>
<th>Abundance correlated w/ Delta in-, thru-, out-flow?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook salmon</td>
<td>Yes</td>
<td>3-5</td>
<td>Anadromous</td>
<td>River</td>
<td>Yes</td>
</tr>
<tr>
<td>Striped bass</td>
<td>No</td>
<td>4-10</td>
<td>Anadromous</td>
<td>River</td>
<td>Yes</td>
</tr>
<tr>
<td>Green sturgeon</td>
<td>Yes</td>
<td>Decades</td>
<td>Anadromous</td>
<td>River</td>
<td>Yes</td>
</tr>
<tr>
<td>Delta smelt* (Fall X₂)</td>
<td>Yes</td>
<td>1</td>
<td>Resident</td>
<td>Delta</td>
<td>Yes</td>
</tr>
<tr>
<td>Longfin smelt</td>
<td>Yes</td>
<td>1-3</td>
<td>Both</td>
<td>Delta/Suisun</td>
<td>Yes</td>
</tr>
<tr>
<td>Starry flounder</td>
<td>Yes</td>
<td>7-8</td>
<td>Catadromous</td>
<td>Ocean</td>
<td>Yes</td>
</tr>
<tr>
<td>Sac. Splittail</td>
<td>Yes</td>
<td>5-7</td>
<td>Resident</td>
<td>Shallow FW</td>
<td>Yes</td>
</tr>
<tr>
<td>Am. Shad</td>
<td>No</td>
<td>5-7</td>
<td>Migratory</td>
<td>River</td>
<td>Yes</td>
</tr>
<tr>
<td>Bay shrimp</td>
<td>Yes</td>
<td>1.5-2.5</td>
<td>Catadromous</td>
<td>Ocean</td>
<td>Yes</td>
</tr>
<tr>
<td>Calanoid Copepods</td>
<td>Yes/No</td>
<td><1</td>
<td>Resident</td>
<td>Varies</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Best Available Science Strongly Supports Restoration of Freshwater Flow Patterns as a Necessary for Ecosystem Restoration:

State Water Resources Control Board (2010) “The best available science suggests that current flows are insufficient to protect public trust resources. [p.2]

US Fish and Wildlife Service (2010) “...flow in the Delta is one of the primary determinants of habitat availability and one of the most important components of ecosystem function”

California Department of Fish and Game (2010) “Recent Delta flows are insufficient to support native Delta fishes in habitats that now exist in the Delta”.[p. 94]

And

“... restoration for both salmon and steelhead in the SJR primarily hinges on obtaining sufficient magnitude, duration and frequency of spring time flows...”

San Francisco Estuary Project (2011) “Scientists now consider poor freshwater inflow conditions to be one of the major causes for the ongoing declines of fish populations observed in the upper Estuary [p.23].

National Research Council (2012) “... if the goal is to sustain an ecosystem that resembles the one that appeared to be functional up to the 1986-93 drought, exports of all types will necessarily need to be limited in dry years, to some fraction of unimpaired flows that remains to be determined...” [p. 105]
Problems for the BDCP

- Delta inflow and outflow are unchanged or reduced under most circumstance
 - Negative impacts to flow dependent species, particularly those that rely on Delta outflow

Operations may not be permitable
Problems for the BDCP

• Entrainment mortality is not significantly reduced for most species
 – Entrainment is not a problem under status quo conditions (???)

Conservation Measure #1 (New North Delta Conveyance) may not be a conservation measure
Problems for the BDCP

• Effects of Shallow Water Habitat Restorations:
 – Uncertain,
 – Unequally Distributed,
 – Occur in the Distant Future, and
 – Unlikely to Benefit Species that Do Not Use Shallow Water Habitats

Habitat restoration and improvements to flow are both necessary – neither is sufficient alone and their effects are not interchangeable
Problems for the BDCP

- Shifting Baselines
 - Incorporates existing Biological Opinions selectively
 - Defines current export baseline differently when evaluating economic v. biological effects
 - Assumes existing infrastructure and operations will not be altered (e.g. in response to regional climate change)
 - Applies threshold of significant impacts in a systematically biased fashion

Administrative Draft Environmental Documents
Not Credible
Available at: www.bay.org/publications

The Bay Institute