2015 IRP Technical Process Draft Results

Southern California Water Dialogue
September 23, 2015
Phase 1: IRP Technical Update Process and Schedule

- **February**: Oral Report
 - Establish IRP Committee
- **March**: Public Outreach Workshop
- **June**: Update IRP Committee
- **September**: Consider Adoption

Member Agency Technical Process

Technical Review and Update

Analysis

Draft Report
Phase 2: IRP Policy Implementation Update Process and Schedule

- **Board**
 - Board Deliberation on Policy and Implementation

- **Member Agency**
 - Member Agency Process

- **Public**
 - Public Outreach and Input

2016:
- Jan
- Feb
- Mar
- Apr
- May
- Jun
- ...

Published Report
Four Key Framing Questions

- What is our current outlook on supplies and demands?
- What happens if we do nothing?
- What happens if we continue developing the current 2010 IRP targets?
- What potential changes to the current 2010 IRP targets are needed?
What is Our Current Outlook on Supplies and Demands?
Conservation Savings
Conservation Savings* Projected on 1990 Base Year

*Does not include conservation from Price Effect
Retail Demands
Total Retail Demands

Key Assumptions

- Updated demographic forecasts
 - SCAG RTP 12
 - SANDAG Series 13

- Retail M&I Demand
 - New econometric model

- Agency provided demand forecasts
 - Agricultural
 - Seawater Barrier
 - Replenishment
Near-Term Demand Adjustment

Key Assumptions

- Capture observed reduction in demand
- Estimate behavioral and structural elements
- Adjust climate effects and other conservation savings elements to avoid double-counting of reductions in the forecast
Retail Demands Post-Conservation
Historical and Projected

Range of Total Retail Demands (Million Acre-Feet)

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>3.79</td>
<td>3.86</td>
<td>3.93</td>
<td>3.99</td>
<td>4.03</td>
</tr>
<tr>
<td>Avg</td>
<td>4.18</td>
<td>4.26</td>
<td>4.34</td>
<td>4.41</td>
<td>4.46</td>
</tr>
<tr>
<td>Max</td>
<td>4.46</td>
<td>4.56</td>
<td>4.64</td>
<td>4.72</td>
<td>4.78</td>
</tr>
</tbody>
</table>
Local Supplies
Total Average-Year Local Supplies
2015 IRP Draft Forecast

Million Acre-Feet

Calendar Year

2016 2020 2024 2028 2032 2036 2040
Total Range of Local Supplies

2015 IRP Draft Forecast

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Min</th>
<th>Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>2.02</td>
<td>2.30</td>
<td>2.62</td>
</tr>
<tr>
<td>2025</td>
<td>2.09</td>
<td>2.35</td>
<td>2.64</td>
</tr>
<tr>
<td>2030</td>
<td>2.11</td>
<td>2.38</td>
<td>2.67</td>
</tr>
<tr>
<td>2035</td>
<td>2.17</td>
<td>2.40</td>
<td>2.69</td>
</tr>
<tr>
<td>2040</td>
<td>2.18</td>
<td>2.41</td>
<td>2.71</td>
</tr>
</tbody>
</table>
Imported Supplies
SWP Existing Conveyance Scenario
Draft Forecast Table A + Article 21

Total Range of SWP Supplies
(Million Acre-Feet)

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Avg</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Max</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
</tr>
</tbody>
</table>
Storage Portfolio
Metropolitan’s Storage Programs

Central Valley/SWP Storage
San Luis Carryover
Semitropic
Arvin-Edison
Kern Delta
Mojave
CRA Storage
DWCV Advance Delivery
Lake Mead ICS

Local Storage
Diamond Valley
Lake Mathews
Lake Skinner
Conjunctive Use Programs
DWR State Project Reservoirs
MWD Storage Programs Summary

Million Acre-Feet

<table>
<thead>
<tr>
<th></th>
<th>Storage Capacity</th>
<th>Put Capacity</th>
<th>Take Capacity</th>
<th>2016 Est. Starting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Valley & SWP</td>
<td>1.63</td>
<td>0.54</td>
<td>0.56</td>
<td>0.42</td>
</tr>
<tr>
<td>Colorado River</td>
<td>2.39</td>
<td>0.65</td>
<td>0.60</td>
<td>0.22</td>
</tr>
<tr>
<td>In-Region</td>
<td>1.30</td>
<td>0.90</td>
<td>0.94</td>
<td>0.14</td>
</tr>
<tr>
<td>Total Dry-Year</td>
<td>5.32</td>
<td>2.09</td>
<td>2.10</td>
<td>0.77</td>
</tr>
<tr>
<td>Emergency</td>
<td>0.63</td>
<td>0.63</td>
<td>0</td>
<td>0.63</td>
</tr>
<tr>
<td>Total</td>
<td>5.95</td>
<td>2.72</td>
<td>2.10</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Shows maximum capacities, actual capacity varies based on contract terms
What Happens if We do Nothing?

“Do Nothing” Case
Draft Water Balance
Reliability Measures
Potential Measures of Reliability

- Supply shortages
 - Frequency of shortage (a.k.a. probability)
 - Size of shortage
 - IRP reliability goal: “100% reliability under foreseeable hydrologic conditions”

- Storage thresholds
 - Minimum storage level
 - Average storage level
Summary of Shortage Probability
“Do Nothing” Case Draft Water Balance

<table>
<thead>
<tr>
<th>Year</th>
<th>Shortage</th>
<th>No Shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>8%</td>
<td>92%</td>
</tr>
<tr>
<td>2025</td>
<td>7%</td>
<td>93%</td>
</tr>
<tr>
<td>2030</td>
<td>21%</td>
<td>79%</td>
</tr>
<tr>
<td>2035</td>
<td>36%</td>
<td>64%</td>
</tr>
<tr>
<td>2040</td>
<td>59%</td>
<td>41%</td>
</tr>
</tbody>
</table>
Summary of Ending Dry-Year Storage

“Do Nothing” Case Draft Water Balance

<table>
<thead>
<tr>
<th>Year</th>
<th>Less Than 1 MAF</th>
<th>Greater Than 1 MAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>11%</td>
<td>89%</td>
</tr>
<tr>
<td>2025</td>
<td>16%</td>
<td>84%</td>
</tr>
<tr>
<td>2030</td>
<td>32%</td>
<td>68%</td>
</tr>
<tr>
<td>2035</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>2040</td>
<td>85%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Observations

“Do Nothing” Case Draft Water Balance

- The “do nothing” approach is not sustainable
- Shortage probability and size both increase over time
 - Total retail demands increase over time
 - Constant or decreasing local and imported supplies
- Storage quantity decreases over time
 - Less water to store
 - Higher needs for storage to balance supplies and demands
- Significant resource investments are needed
What Happens if We Develop the 2010 IRP Update Targets?

Current IRP Approach
Draft Water Balance
<table>
<thead>
<tr>
<th>Water Use Efficiency</th>
<th>• Achieve a 20% reduction in GPCD as a region by 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Resources</td>
<td>• Develop ~100 TAF through incentives and partnerships</td>
</tr>
<tr>
<td>SWP</td>
<td>• Seek short, mid, and long-term Delta improvements</td>
</tr>
<tr>
<td>CRA</td>
<td>• Develop Dry-Year supply programs to fill the aqueduct when needed</td>
</tr>
</tbody>
</table>
Targeted IRP Development
Current IRP Approach

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thousand Acre-Feet</td>
<td>495</td>
<td>520</td>
<td>545</td>
<td>545</td>
<td>545</td>
</tr>
</tbody>
</table>

- Delta Improvements
- Local Augmentation
- Water Use Efficiency
Summary of Shortage Probability
“Do Nothing” Case Draft Water Balance

<table>
<thead>
<tr>
<th>Year</th>
<th>Shortage</th>
<th>No Shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>8%</td>
<td>92%</td>
</tr>
<tr>
<td>2025</td>
<td>7%</td>
<td>93%</td>
</tr>
<tr>
<td>2030</td>
<td>21%</td>
<td>79%</td>
</tr>
<tr>
<td>2035</td>
<td>36%</td>
<td>64%</td>
</tr>
<tr>
<td>2040</td>
<td>59%</td>
<td>41%</td>
</tr>
</tbody>
</table>
Summary of Shortage Probability
Current IRP Approach Draft Water Balance

<table>
<thead>
<tr>
<th>Year</th>
<th>Shortage</th>
<th>No Shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>2%</td>
<td>98%</td>
</tr>
<tr>
<td>2025</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2030</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2035</td>
<td>1%</td>
<td>99%</td>
</tr>
<tr>
<td>2040</td>
<td>2%</td>
<td>98%</td>
</tr>
</tbody>
</table>
Summary of Ending Dry-Year Storage
“Do Nothing” Case Draft Water Balance

- **2020**: 11% Less Than 1 MAF, 89% Greater Than 1 MAF
- **2025**: 16% Less Than 1 MAF, 84% Greater Than 1 MAF
- **2030**: 32% Less Than 1 MAF, 68% Greater Than 1 MAF
- **2035**: 60% Less Than 1 MAF, 40% Greater Than 1 MAF
- **2040**: 85% Less Than 1 MAF, 15% Greater Than 1 MAF
Summary of Ending Dry-Year Storage

Current IRP Approach Draft Water Balance

<table>
<thead>
<tr>
<th>Year</th>
<th>Less Than 1 MAF</th>
<th>Greater Than 1 MAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>3%</td>
<td>97%</td>
</tr>
<tr>
<td>2025</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Observations
Current IRP Approach Draft Water Balance

- Significant resource investments are needed to achieve the current IRP Targets
- Existing supplies need to be maintained
 - Colorado River Aqueduct
 - Local supply production
- Compared to the “Do Nothing” Case
 - Reliability measures improve
 - Storage measures improve
 - Challenges still exist in the shorter term
What Potential Changes to the Current IRP Targets are Needed?

- Adjust targets to address shorter term imbalances
- Adjust targets to ensure sufficient storage levels
- Ensure an adequate supply buffer
- Refine and improve implementation approaches and policy to ensure development
Next Steps
Next Steps – Water Tomorrow

Phase 1: IRP Technical Update
- Finalize Results: October 2015
- Public Outreach Workshop: October 22nd
- IRP Committee considers Technical Update adoption: December 2015

Phase 2: Investigate Policy Implications
- Kick-off: Early 2016