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Atmospheric Rivers (ARs) 

Most AR studies to date have been regionally focused on 
western N. America and western Europe.  

SSM/I Integrated Water Content (IWV) 



Origin of “Atmospheric Rivers” 

Over 90% of poleward moisture 
transport at midlatitudes is by ARs 
that take up only ~10% of the zonal 

circumference; Zhu and Newell (1998) 

Total 

ARs 

These extreme storms 
influence global water and 
energy budgets, and thus 

shape Earth’s climate. 



AR Landfall Impacts 

Account for ~40% of California’s annual water supply in a few storms 
Account for most flooding events on U.S. West coast 



Manage California  
Water Resources & 

Flood Hazards  

Regional Concerns vs Global Approach 

Management Aided by  
Accurate Weather &  
Climate Predictions  

Modern Weather & 
Climate Prediction is a 
Global Consideration  
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I. Experimental Subseasonal (i.e. week 3) Predictions 



Global AR Detection 

• IVT > 85th percentile 
• Look for contiguous areas 
• Length > 2000 km 
• Length/Width > 2 
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II. Map IVT globally III. Apply AR Criteria 

I. Compute IVT 

Gives Long, Narrow Extreme Moisture Transports i.e. Rivers  



Global AR Detection 

Guan and Waliser (2015) 

• AR detection applied to global 
“reanalysis” datasets (e.g., ERA-I, 
MERRA-2) 

• ~30 year records, with AR maps every 6 
hours 

• Code and databases available.  

• Developed for global studies – analysis, 
modeling, prediction, etc. 



Global AR Characteristics 

Guan and Waliser (2015) 

AR Landfalls 



Climate Patterns and ARs 

Pacific-North American (PNA) 

-PNA  

+PNA  

Climate patterns, such as PNA, 
affect the frequency of ARs 

Guan et al. 2013 

2010/2011 Winter in California  
• Largest total seasonal snow in 

previous 14 Years (~170% of normal) 
• Largest # of AR days (twice normal) 
• –PNA and –AO Conditions 



La Niña 
anomaly 

El Niño 
anomaly 

El Nino Southern 
Oscillation (ENSO) 

Guan and Waliser (2015) 

Climate Patterns and ARs 

Impacts AR Frequency 
Across the Globe 

Longer-lead predictions of ARs 
may be enabled by these slowly 

evolving ”climate” patterns 



Extreme Winds And Precipitation During Landfall Of Atmospheric Rivers  

Pioneer Cabin Tree, also known as the “Tunnel Tree”, a giant sequoia in Calaveras Big Trees State Park, CA 

Image from M. Ralph/CW3E/SIO/UCSD 

cm 

AR Extremes & Global Impacts 

• A strong Atmospheric River (AR) made landfall 
over the U.S. West Coast on 8-9 January 2017. 

 

• A number of locations experienced over 12 
inches of precipitation over 3 days, and were 
exposed to extreme wind conditions.  

 

• The extreme storm conditions resulted in the 
demise of the “Tunnel Tree”, a giant sequoia in 
Calaveras Big Trees State Park, California 

Slide developed by D. Waliser (JPL), M. Dettinger (USGS) & M. Ralph (CW3E/UCSD) 



Waliser & Guan (2017) 

Circle color (size) indicates the rank (speed) of 10 m wind 
extremes that are connected to an AR considering all 6-

hourly ECWMF surface wind values from 1997-2014. 

Of 19 damaging wind storms with 
insurance losses in $B US over Europe 

from 1997-2013, 14 (filled) were 
associated with ARs. Circle size indicates 
size of $ loss; squares are less than $1B.  

Wind & Precipitation 
AR Extremes & Global Impacts 



Predicting AR Events 

How well do our global NWP 

models – ECMWF in this case - 

predict AR occurrence & position? 

DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2018) 

ECMWF Subseasonal to Seasonal (S2S) 
hindcasts include twice-per-week, 11 
member ensembles, from 1996-2013. 

 
Courtesy WCRP/WWRP 

S2S Project 



 Decision Support 
Tradeoffs 

DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2017, In Revision) 

Predicting AR Events 



Climate Change & ARs 

Previous Studies 

• No Global Studies 
• No way to compare UK & US, different models, methods and algorithms 
• What about outside UK & US? 

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions) 



Climate Change & ARs 
AR Frequency, Size & Transport: 21 CMIP5 Models 

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions) 



Climate Change & ARs 
AR Frequency, Size & Transport: 21 CMIP5 Models 

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions) 



Climate Change & ARs 

AR conditions vs AR Events 

AR Frequency, Size & Transport: 21 CMIP5 Models 

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions) 



Climate Change & ARs 

About 40% Increase in AR Conditions 

About 25% longer  
About 25% wider 
About 10% fewer  

AR Conditions = Number ARs * Length * Width 

Changes in ARs 

Occurrence of extreme IVT values within ARs ~double. 

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions) 



Weather Forecasts  
0-14 Days 

e.g. Atmospheric Rivers 

… cold spells, hurricanes, heat waves, thunderstorms/tornados, nor’easters, santa ana winds, etc 

More/Better Observations 
Improved Models 

More Computing Power 

Forecast Skill Increasing  Forecast Errors Diminishing 

General Weather Patterns Hurricanes 



 

• Weather  0-14 Days 

• Subseasonal 2-12 Weeks 

• Seasonal  3-12 Months 

• Interannual  1 year - Decade 

• Climate   Decades - Centuries 

 

Forecast Lead Times 

Subseasonal 
to Seasonal 

(S2S)  
2 weeks -12 

months 

p.s. ”subseasonal” aka “intraseasonal” 

2016 
NAS 

Report 



S2S: El Nino – La Nina  

Ocean 

Surface 

Temperature 

LifeCycle  ~Months 

Atmospheric 

Circulation 

Tropical SST – Capabilities to Predict 

Extra-tropical Impacts – Difficult/Still Learning 



S2S: Madden-Julian Oscillation 

Tropical 

Precipitation 

& Circulation 

LifeCycle  ~Weeks 

Extra-tropical  

Atmospheric 

Circulation 

Tropical MJO – Skill out to 3-4 Weeks 

Extra-tropical Impacts – Difficult/Still Learning 

40-50 
Days 

More/Better Observations 
Improved Models 

More Computing Power 



Subseasonal AR Forecasts 
Experimental - Week 3 



***EXPERIMENTAL AR FORECAST*** 
March 12, 2018 forecast: probability of AR occurrence during week-1 

Week-1 
(1-day to 7-day lead) 
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Experimental AR forecast issued on Monday, March  

12, 2018 by M. DeFlorio, A. Goodman, D. Waliser, 

B. Guan, A. Subramanian, and M. Ralph using 51-  
member real-time ECMWF data for an 

Experimental AR Forecasting Research Activity  
sponsored by California DWR 

0% 
Contact: M. DeFlorio 

(michael.deflorio@jpl.nasa.gov) 



Week-2 
(8-day to 14-day lead) 
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***EXPERIMENTAL AR FORECAST*** 
March 12, 2018 forecast: probability of AR occurrence during week-2 

Experimental AR forecast issued on Monday, March  

12, 2018 by M. DeFlorio, A. Goodman, D. Waliser, 

B. Guan, A. Subramanian, and M. Ralph using 51-  
member real-time ECMWF data for an 

Experimental AR Forecasting Research Activity  
sponsored by California DWR 

0% 
Contact: M. DeFlorio 

(michael.deflorio@jpl.nasa.gov) 



March 12, 2018 forecast: probability of AR occurrence during week-3  

(chance of an AR occurring at any time during week-3) 

10% 
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30% 
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50% 

60% 

70% 

80% Week-3 
(Combined 15-day to 21-day lead) 

Top row: hindcast climatology (ECMWF 1996-2015 data)  Bottom 

row: real-time forecast (ECMWF 51-member ensemble) 

***EXPERIMENTAL AR FORECAST*** 

Experimental AR forecast issued on Monday, March  

12, 2018 by M. DeFlorio, A. Goodman, D. Waliser, 

B. Guan, A. Subramanian, and M. Ralph using 51-  
member real-time ECMWF data for an 

Experimental AR Forecasting Research Activity  
sponsored by California DWR 
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Contact: M. DeFlorio 

(michael.deflorio@jpl.nasa.gov) 
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Lower than  

average AR  

activity 

Week-3 
(Combined 15-day to 21-day lead) 

Top row: hindcast climatology (ECMWF 1996-2015 data)  Bottom 

row: real-time forecast minus climatology (ECMWF 51-  member 

ensemble) 

Contact: M. DeFlorio  

(michael.deflorio@jpl.nasa.gov) 

***EXPERIMENTAL AR FORECAST*** 
March 12, 2018 forecast: probability of AR occurrence during week-3  

(chance of an AR occurring at any time during week-3) 

Experimental AR forecast issued on Monday, March  

12, 2018 by M. DeFlorio, A. Goodman, D. Waliser, 

B. Guan, A. Subramanian, and M. Ralph using 51-  
member real-time ECMWF data for an 

Experimental AR Forecasting Research Activity  
sponsored by California DWR 

Higher than 

average AR  activity 



Summary 

• Atmospheric Rivers are a global phenomena that shape the Earth’s 
climate, water and energy cycles, as well as account for regional 
weather and water extremes. 

• We’ve developed a detection algorithm that can be consistently used on 
global “observations” (i.e. re-analyses), climate simulations and forecast 
models. 

• Using this detection algorithm, we are developing model diagnostics and 
performance metrics, in conjunction with other observations (e.g. in-situ 
CalWater, satellite), to: 

o Identify and characterize hydrometeorological impacts from ARs 
o Evaluate model performance and identify weaknesses to guide 

model improvement. 
o Quantify forecast skill in a suite of operational S2S/weather 

prediction models. 
o Characterize projected 21ST century changes in Atmospheric Rivers. 

o Develop experimental week-3 AR activity forecast products.  
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IVT Histograms Based On  
5636 NE Pacific ARs from ERA-I   

125-163W, 23-46N 
Jan 15-Mar 25 1979-2016 

Algorithm Validation Support from CalWater 

Ralph et al. (2017)  

Guan, Waliser and Ralph (2018) 

21 AR Event Transects  
4.7 +/- 1.9kg/s     

Min 1.3; Max 8.3 
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AR History: Poleward Moisture Transports 
Influencing global Climate & Water Extremes 

Over 90% of poleward moisture transport at midlatitudes is by ARs that 
take up only ~10% of the zonal circumference; Zhu and Newell (1998) 

Total 

ARs 

Figure courtesy J. Cordeira, Plymouth University 

For discussion on connections 
between ARs, Tropical 

Moisture Exports (TMEs) and 
Warm Conveyor Belts (WCBs), 

see Cordeira (2015).  

See AMS 
Glossary 


