Nature-Based Watershed Planning for a Viable Future

July 21, 2018

March 24, 2020

Melanie Winter, Founder & Director
The River Project
ABOUT THE RIVER PROJECT

The River Project is a nonprofit established in 2000. We work to advance watershed-based planning and to restore vital ecosystems of the Los Angeles River Watershed for a regenerative, equitable, just and climate-resilient future through:

- Scientific Research
- Policy Advancement
- Inclusive Planning
- Regenerative Design
- Installations
- Community Engagement
- Hands-on Educational Programs
WHAT IS WATERSHED-BASED PLANNING?

- Engaging from the comprehensive perspective of a wider interconnected watershed—rather than the narrow scope approach that results in costly/inefficient single-purpose solutions

- Considering the full range of challenges and integrating *multiple benefits and natural regeneration* as fundamental to solutions

- Working *with* nature to manage flood risk without sacrificing water supply, degrading water quality, or destroying the natural processes of nature’s vital services

- Managing rainwater where it falls
Provides a blueprint for recovery of functionality throughout the Los Angeles River Watershed

- Over 200 projects identified; 37 prioritized
- 16 projects completed
- 5+ projects slated for completion by 2020
- 4 ongoing works in progress
- 5 additional projects funded

TUJUNGA-PACOIMA WATERSHED PLAN

Completed (7)
- Primary Street Improvement
- Big Tujunga Dam Enhancement Project
- Hansen Golf Course Water Recycling Project
- Hansen Spreading Grounds Enhancement
- Tujunga Wells Ammoniation Station
- Arleta Neighborhood Retrofit
- Angeles Gateway Preserve

Partially Completed (4)
- Railroad Right of Way
- Tujunga Wash Project
- Pacoima Median & Bike Trail
- Pacoima Wash Recreation Trail

In Progress (7)
- Power Line Easement Project
- Valley Generation Station Storm Water Capture
- North Hollywood Well Field
- Pacoima Spreading Ground Enhancement
- Tujunga Wells Ammoniation Station
- Pacoima Reservoir Sediment Removal

Funded (5)
- Tujunga-Sun Valley Tujunga Wash Diversion Project
- Hansen Dam Water Conservation & Supply
- Boulevards Pit Stormwater Storage
- Pacoima Neighborhood Retrofit
- Arleta Greenbelt

No Action to Date (14)
- CBS-Viacom Radio Community Park
- Tujunga and Pacoima Wash Bridge Retrofit & Channel Expansion
- Moorpark Park Retrofit
- Wilson Canyon Wash & Sylmar High School Retrofit
- Panorama City Creek Restoration
- Van Nuys Boulevard Pocket Parks
- Grace Community Church of the Valley Parking Retrofit
- Tujunga Wash Outdoor Classroom
- Sunland Park Retrofit
- Wyngate Street Pocket Park
- Verdugo Hills High School Retrofit
- Mission Hills Greenbelt
- Tujunga "Tataviam" Village Parks
- Hansen Dam Wildlife Lake Improvement
WOODMAN AVENUE MEDIAN

• ¾ mile long
• Collects runoff from 120 acres
• 80 acre-feet water capture/year average
WATER LA HOME RETROFITS

- Parkway Retrofits
- Rain Grading
- Native + Edible Gardens
- Healthy Soil
- Infiltration Trenches
- Permeable Paving
- Rain Tanks + Cisterns
- Greywater Systems
Engaging Residents as Partners in the Work
Homes Retrofitted by Water LA:

- Reduced water use by an average 25%
- 22 Homes capture and treat estimated average 3.8AF/year
- 18,175 square feet native plants
- Averaged $5,200 per household in labor and materials
- Average home retrofit cost an estimated $1,013/AF over a 30-year expected project life
- Average parkway basin alone cost $470/AF

Average Participant Water Consumption (per capita)

Prior to Project (2009-2013):
73 gallons per day

After Completed Retrofits (2015):
54.7 gallons per day

Key Pollutants Removed by Water LA Pilot

Estimated based on 85th percentile storm

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Prior (Kg/year)</th>
<th>After (Kg/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash</td>
<td>36.00</td>
<td>0.32</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.32</td>
<td>0.308</td>
</tr>
<tr>
<td>Copper</td>
<td>30.08</td>
<td>20.48</td>
</tr>
<tr>
<td>Lead</td>
<td>20.48</td>
<td>232.96</td>
</tr>
<tr>
<td>Zinc</td>
<td>232.96</td>
<td>660,992,000.00</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>660,992,000.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LADWP Stormwater Project Costs (per acre-foot of water)

- Laurel Canyon Green Street Project: $1220
- Sun Valley EDA Improvement Project: $645
- Woodman Avenue Stormwater Capture Project: $727
- MWD Tier 2 price: $1100
- Average Water LA parkway retrofit: $470
TABLE 1

LID Feature Average Percolation Rate Summary

<table>
<thead>
<tr>
<th>LID Feature Location</th>
<th>Testing Series</th>
<th>3-Month</th>
<th>9-Month</th>
<th>18-Month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81st Street</td>
<td>4.3</td>
<td>5.0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Whitset Avenue</td>
<td>9.1</td>
<td>10.7</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>Flallon Avenue</td>
<td>1.2</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Le Borne Avenue</td>
<td>13.2</td>
<td>14.4</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Private properties have always been the third rail in Los Angeles stormwater work. Through working with residents directly, providing green stormwater solutions, and training residents to maintain these solutions, The River Project has cracked it with this Water LA Program.

"MARK GOLD
Associate Vice Chancellor for Environment and Sustainability, UCLA"
• More monitoring data is needed
• Differentiating between project scales and typologies would provide more clarity on costs and benefits
• Evaluating project co-benefits beyond stormwater volume in additional detail could provide more
• Accurate cost figures to support fiscally sound decision making.
TYPOLOGY AND SCALE

<table>
<thead>
<tr>
<th>Nature-Based Solutions</th>
<th>Gray/Green Infrastructure</th>
<th>Gray Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain grading (swales, berms, rain gardens), curb cuts with parkway basins, infiltration trenches, soil amendment, vegetation and tree planting</td>
<td>Cisterns, rain tanks, permeable pavement, infiltration trenches, bioswales, green roofs, planter bump-outs, tree wells, most LID</td>
<td>Drywells, small low-flow diversions (LFD)/drainage, some LID</td>
</tr>
<tr>
<td>Examples: Water LA PanoramaCity Retrofits (3.8 AFY for all 22 retrofits)</td>
<td>Examples: Horace Mann Elementary School, Jeff Seymour Family Center</td>
<td>Examples: PCH LFD in Pacific Palisades</td>
</tr>
<tr>
<td>Neighborhood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands, park grading, stream daylighting/restoration</td>
<td>Green streets, parks with large underground chambers, small engineered treatment wetlands</td>
<td>Street gutters, storm drains, injection wells, large storage tanks, large low flow diversions/drainage</td>
</tr>
<tr>
<td>Centralized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floodplain reclamation, large wetland conservation, mountain and upper watershed conservation</td>
<td>Spreading grounds, large engineered treatment wetlands</td>
<td>Dams, Water and waste treatment plants, pipelines, reservoirs</td>
</tr>
<tr>
<td>Examples: Upper LA River Big Tujunga Restoration (1,000 AFY), Malibu Lagoon</td>
<td>Examples: Tujunga Spreading Grounds (16,000 AFY Rory M. Shaw Wetlands Park (590 AFY)</td>
<td>Examples: San Dimas Dam, Hyperion Water Reclamation Plant, Santa Monica Urban Runoff Recycling Facility</td>
</tr>
</tbody>
</table>
For the last century, we've provided water to Angelenos with large-scale reservoirs and pipelines. With our changing climate and more people moving in every day, our pipes may soon run dry. But by managing our water use on small scales, in every household, in every yard, and on every street, we can provide a great deal more water for everyone.

BILL NYE
Science Educator, Professional Engineer
PLANNING EFFORTS
IMPACTS OF CLIMATE CHANGE
CO₂ mitigation curves: 1.5°C

- Constant emissions for nine years will use up the remaining carbon budget.

- Starting mitigation in 2019 will require monumental mitigation rates.

- Starting mitigation in 2000 would have required a mitigation rate of about 4%/yr.

For a >66% chance of staying below 1.5°C. Remaining budget: 420 GtCO₂.
Mitigation curves after Raupach et al. 2014.

Since such steep mitigation is impossible, the only way to achieve this budget is with very large "negative" emissions: pulling CO₂ out of the atmosphere.

Intergovernmental Panel on Climate Change (IPCC)

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)
The climate and biodiversity crises are not only environmental issues—they are economic, social, public health, security, moral, and ethical issues.

Transformative change is needed.

Climate change and biodiversity loss are impacting human well-being now—an immediate imperative to address them together.
Southwest Drought Rivals Those of Centuries Ago, Thanks to Climate Change

The drought that has gripped the American Southwest since 2000 is as bad as or worse than droughts in the region over the past 1,200 years, a new study finds.

Wildlife Collapse From Climate Change Is Predicted to Hit Suddenly and Sooner

Scientists found a “cliff edge” instead of the slippery slope they expected.

Here's what a 'very likely' sequel to California's 1862 megastorm would look like

The ARkStorm project reminds residents that preparedness is key.
OK.
SO….

HOW DOES THIS ALL RELATE TO NATURE-BASED APPROACHES TO WATERSHED MANAGEMENT?
CONCRETE

• Third largest human source of carbon emissions globally
• Estimated at 8% of total emissions in 2016 (Andrew 2017)
• Behind only fossil fuels and land-use changes
Nature-based solutions can address global carbon targets in the range of 30% (Griscom et. al. 2017)

Healthy soil can increase water infiltration and hold 20x weight in water (California Department of Food and Agriculture 2018)

Globally soil holds more than 3x the carbon in the atmosphere (Rattan 2007, Batjes 1996)

A diverse structure of soil, plants, and trees is highly effective at absorbing carbon—and at street level can absorb more than 40% of nitrous oxide and 60% of particulate matter (Pugh et. al. 2012)
Wetlands, Including Rivers, Creeks, & Streams

Wetlands are most effective terrestrial habitats for carbon sequestration—primarily freshwater wetlands—holding up to 30% of soil carbon in 8% of the land area (Nahlik and Fennessy 2016).
THREATS & OPPORTUNITIES: SOILS

SOIL INFILTRATION

LEGEND

INCHES / HOUR

LA County

24–42

12–24

10–12

8–10

6–8

4–6

2–4

1–2

0.5–1

0–0.5

Data Sources: US Natural Resources Conservation Service (NRCS), Esri, US Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA)
THREATS & OPPORTUNITIES: PARK NEEDS

PARK NEED
The results of the analysis of the five park metrics were combined to determine an overall park need level for each Study Area. This approach creates a framework for assessing park need from a Countywide perspective.

Population in Each Need Category*
- 32.2% Very High
- 16.5% Low
- 26.2% Moderate
- 20.4% High
- 4.6% Very Low

*0.1% Not Participating

Average Acres per 1,000 Residents in Each Need Category
- Very High: 3.3
- High: 1.6
- Moderate: 11.5
- Low: 12.5
- Very Low: 52.0
KEY ELEMENTS of TRANSFORMATIVE CHANGE

• Address climate change and biodiversity together
• Invest in projects that sharply reduce emissions
• Do not invest in projects that increase emissions, or fail to reduce them
• Replicate and scale successful policies and projects
• Coordinate and integrate cross sectoral actions
• Ensure inclusive governance structures
For every $1 spent on pre-disaster hazard mitigation, we can save $6 in future disaster recovery costs.

Lead with the latest evidence-based science and do not discount externalities when developing cost-benefit analyses.

Nature-based solutions are cost-effective, realizing climate resilience and more.

Redesigning our urban grids from a systems perspective; to restore ecosystem function and mitigate climate disasters is Job One.
Incorporate diverse expertise into planning (earth and social sciences)

Support for healthy soils and urban groundwater recharge

Provide real incentives for action at the parcel scale

Upstream actions either increase or decreases downstream safety

All investments must move us to carbon neutrality: 30% of our investments towards Nature
DOWNLOAD THE REPORTS
and
FOLLOW OUR PROGRESS
via
OUR WEBSITES

TheRiverProject.org
WaterLA.org