

2020 INTEGRATED RESOURCES PLAN

Southern California Water Dialogue February 24, 2021

Presentation Overview

Integrated Resources Plan

History of the IRP

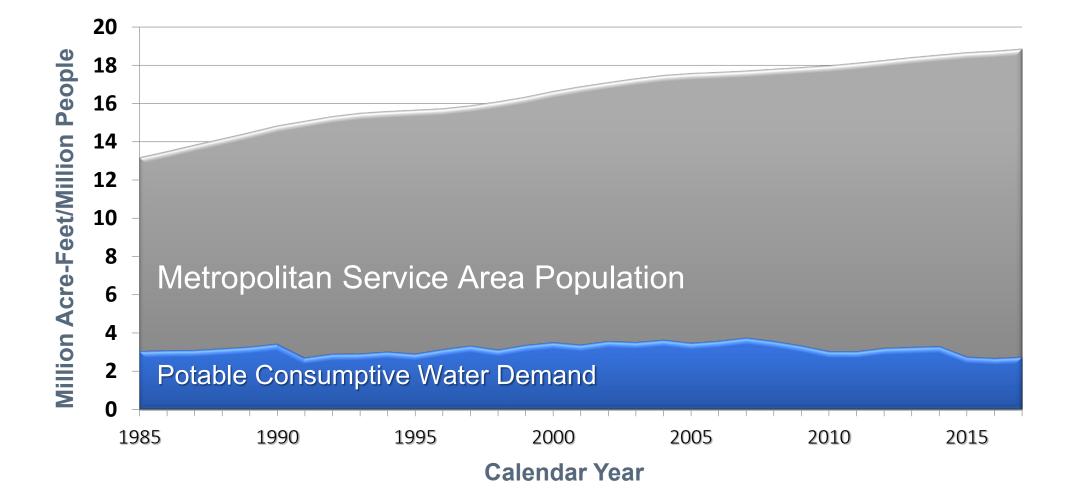
Scenario Planning

IRP Progress & Schedule

Integrated Resources Plan (IRP)

- Blueprint for Southern California water reliability
- Long-term strategy adapting to changing conditions
- Diversified resource portfolio

Conservation Recycling Ground Water Recovery

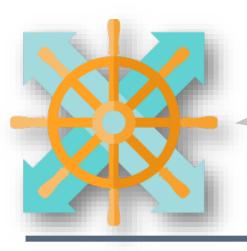

Imported

Water

History of the IRP

1987 - 1992 **Colorado River** SWP Drought Cutbacks **Recession & Drought** Restrictions 1996 2004 2010 2015 WATER INTEGRATED WATER RESOURCES PLAN INTEGRATED WATER RESOURCES PLAN UPDATE **2015 UPDATE** Southern California's Integrated Water Resources Plan REPORT NUMBER 1236 JULY 2004 Volume 1: The Long-Term Resources Plan Report Number 110 March 199

Potable Water Demand Stable Despite Growth



The Future Is Not Predictable

Scenario Planning Approach To Examine A Range of Plausible Futures

TODAY

Step 1: Drivers of Change

Identify Drivers of Change

Step 1: Drivers of Change

Identify Drivers of Change

- Sea level rise
- Rainfall
- Rising temperatures
- Recession or economic upturn
- Public's willingness to pay
- Population growth
- New technologies
- Stormwater expansion
- Emerging contaminants
- Delta issues

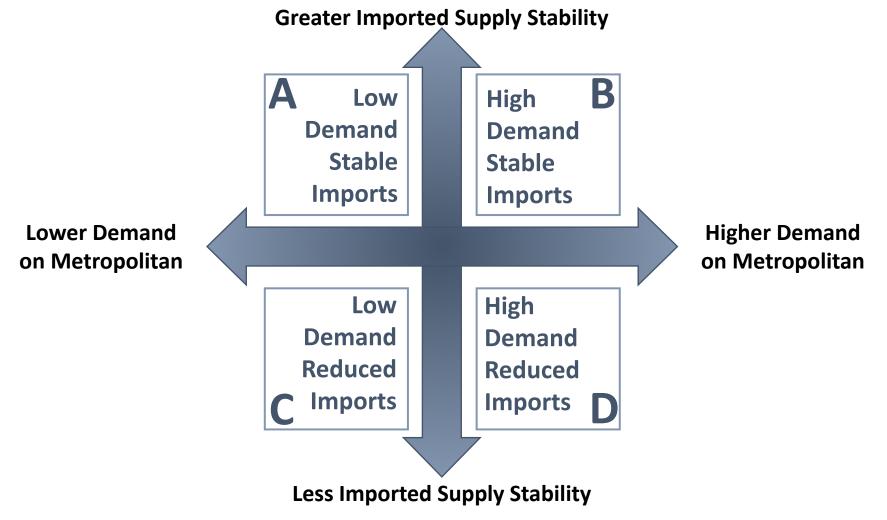
Board Members	%	Member Agencies	%	Stakeholders	%
Colorado River Cooperation	95%	Colorado River Cooperation	91%	Hydrologic Variations	92%
Hydrologic Variations	90%	Emerging Regulations	87%	Outages and Disasters	87%
Stress on River Basins	90%	Direct Potable Reuse	83%	Stress on River Basins	84%
Emerging Regulations	86%	Hydrologic Variations	83%	Direct Potable Reuse	81%
Direct Potable Reuse	76%	Groundwater Contamination	78%	Groundwater Contamination	78%
Outages and Disasters	76%				

Board Members	%	Member Agencies	%	Stakeholders	%
Colorado River Cooperation	95%	Colorado River Cooperation	91%	Hydrologic Variations	92%
Hydrologic Variations	90%	Emerging Regulations	87%	Outages and Disasters	87%
Stress on River Basins	90%	Direct Potable Reuse	83%	Stress on River Basins	84%
Emerging Regulations	86%	Hydrologic Variations	83%	Direct Potable Reuse	81%
Direct Potable Reuse	76%	Groundwater Contamination	78%	Groundwater Contamination	78%
Outages and Disasters	76%				

Board Members	%	Member Agencies	%	Stakeholders	%
Colorado River Cooperation	95%	Colorado River Cooperation	91%	Hydrologic Variations	92%
Hydrologic Variations	90%	Emerging Regulations	87%	Outages and Disasters	87%
Stress on River Basins	90%	Direct Potable Reuse	83%	Stress on River Basins	84%
Emerging Regulations	86%	Hydrologic Variations	83%	Direct Potable Reuse	81%
Direct Potable Reuse	76%	Groundwater Contamination	78%	Groundwater Contamination	78%
Outages and Disasters	76%		<u> </u>		1

Board Members	%	Member Agencies	%	Stakeholders	%
Colorado River Cooperation	95%	Colorado River Cooperation	91%	Hydrologic Variations	92%
Hydrologic Variations	90%	Emerging Regulations	87%	Outages and Disasters	87%
Stress on River Basins	90%	Direct Potable Reuse	83%	Stress on River Basins	84%
Emerging Regulations	86%	Hydrologic Variations	83%	Direct Potable Reuse	81%
Direct Potable Reuse	76%	Groundwater Contamination	78%	Groundwater Contamination	78%
Outages and Disasters	76%				

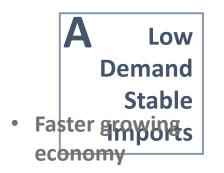
Top 5 Survey rankings by cohort based on percentage of responses that were Extremely or Very Important


Outages and Disasters

/6%

Board Members	%	Member Agencies	%	Stakeholders	%
Colorado River Cooperation	95%	Colorado River Cooperation	91%	Hydrologic Variations	92%
Hydrologic Variations	90%	Emerging Regulations	87%	Outages and Disasters	87%
Stress on River Basins	90%	Direct Potable Reuse	83%	Stress on River Basins	84%
Emerging Regulations	86%	Hydrologic Variations	83%	Direct Potable Reuse	81%
Direct Potable Reuse	76%	Groundwater Contamination	78%	Groundwater Contamination	78%
	700/				

Step 2: Construct Scenarios & Refine Analysis


Created a supply – demand framework

Step 2: Construct Scenarios & Refine Analysis

Working assumptions for each Scenario

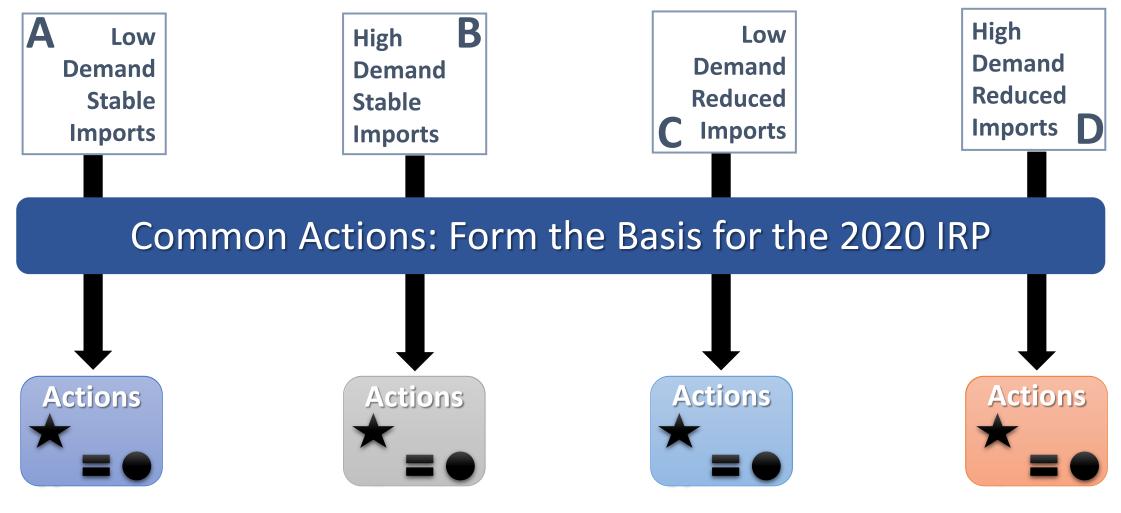
- Slower growing economy
- Least additional supply needed
- Fewest local supply projects included
- Gradual climate impacts/fewer regulatory requirements

- Additional supply needed for growing demands Low Demand
 Additional local supply projects imports
- Gradual climate impacts/fewer regulatory requirements

Stable Imports growing economy • Additional supply needed for loss of imported <u>supply</u>

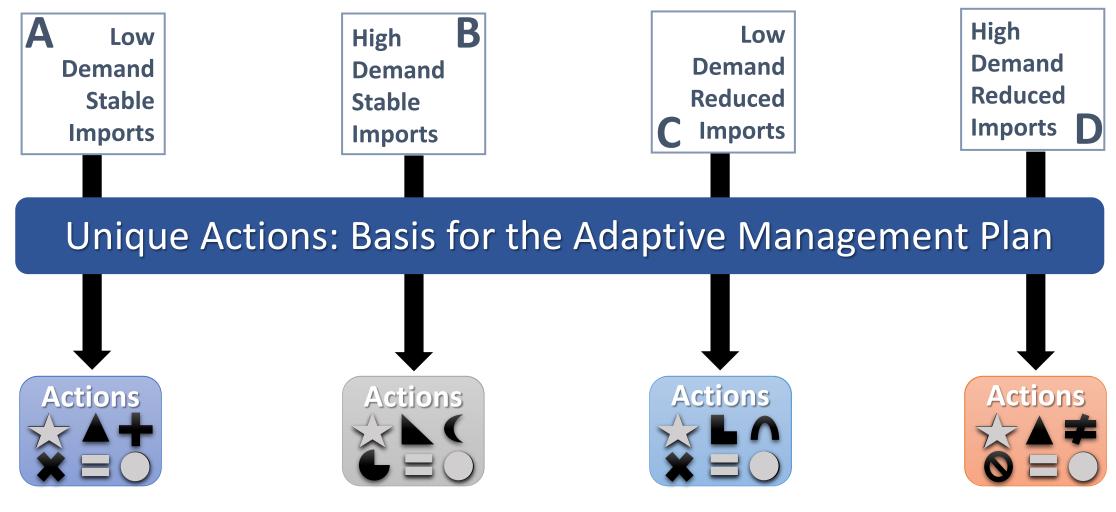
B

High

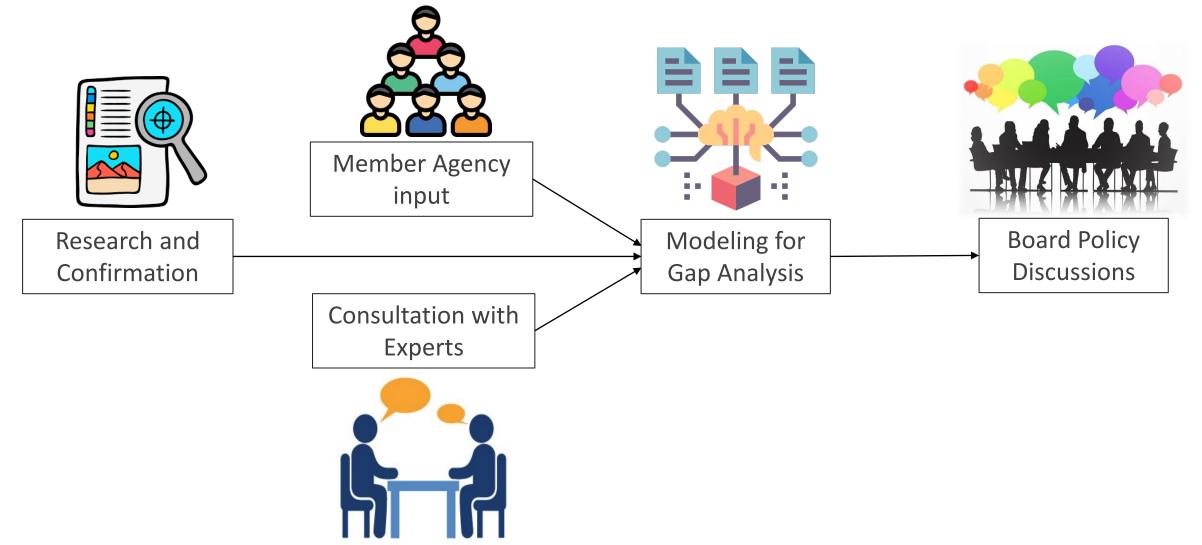

Demand

- High Demand^ditional local supply Reduced projects; prioritize Imports investment needed
 - Severe climate impacts/higher regulatory requirements

- Faster growing
 economy
- Most additional supply needed for growing demands and loss of imported supply
- Most local supply projects included
- Severe climate impacts/higher regulatory requirements


Step 3: Develop A Resource Mix

Identify Actions and Targets to Achieve Reliability


Step 4: Adaptive Management Strategy

Identify Signposts to Inform Policy Decision Makers

IRP Plan through April

Refine Scenario Assumptions and Gap Analysis

Scenario Assumption Refinements

Key Areas

Imported Supply

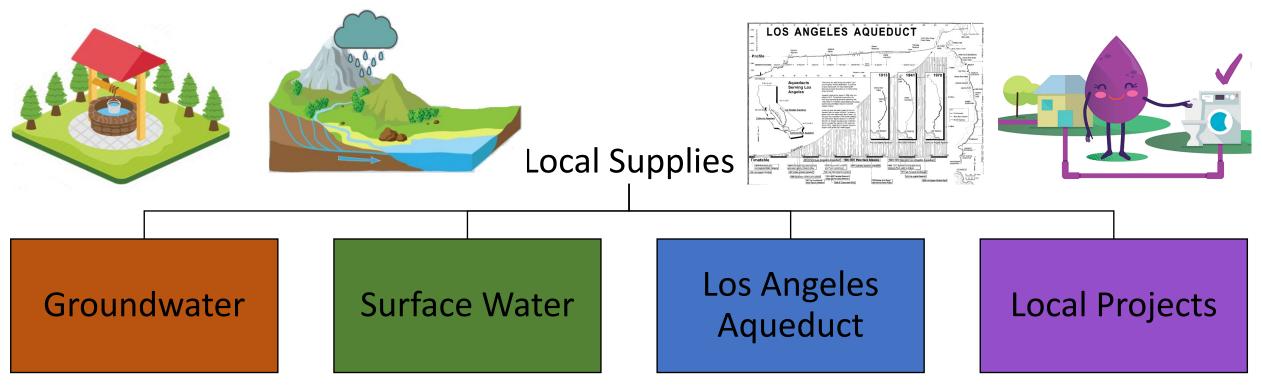
- Colorado River
- State Water Project

Local Supply

- Groundwater
- Recycled Water
- Seawater Desalination
- Surface Water
- Los Angeles Aqueduct

Demand Refinements

- Member Agency Feedback
 - Feedback received through various forums
 - Qualitative/Quantitative Assessment
 - Workshops and other meetings
- Engage with <u>Demand</u> Experts
 - Share feedback and pose questions to experts
 - Receive preliminary assessment of scenarios and input on issues raised
- Workshop with Board, Member Agencies, and Experts
 - Opportunity to review expert input and ask questions in March 2021



Imported Water Supply Refinements

- Member Agency Feedback
 - Feedback received through various forums
 - Qualitative/Quantitative Assessment
 - Workshops and other meetings
- Engage with <u>Climate</u> Experts
 - Share feedback and pose questions to experts
 - Receive preliminary assessment of scenarios and input on issues raised
- Workshop with Board, Member Agencies, and Experts
 - Opportunity to review expert input and ask questions in April 2021

Local Supply Refinements

- Engage member agencies about local supplies through 4 separate yet concurrent tracks
- Engage with <u>Climate</u> Experts

Tentative Schedule

