The 21st Century of Water in Southern California: Living Within Our Means

April 27, 2022
Southern California Water Dialogue
Co-chairs

CONNER EVERTS

Executive Director
Southern California Watershed Alliance

DEE ZINKE

Assistant General Manager/Chief External Affairs Officer, External Affairs
The Metropolitan Water District of Southern California
Southern California Water Dialogue
Steering Committee

• E.J. CALDWELL
 West Basin Municipal Water District

• RITA KAMPALATH
 LA County Chief Sustainability Office

• ZITA YU
 Jacobs

• FERNANDO PALUDI
 Trabuco Canyon Water District

• PEER SWAN
 Irvine Ranch Water District

• CHARMING EVELYN
 Sierra Club

• CHARLEY WILSON
 Southern California Water Coalition

• MARTHA CAMACHO RODRIGUEZ
 Central Basin Municipal Water District

• MARK STADLER
 SDCWA, (Retired)

• RICH ATWATER
 Foothill Municipal Water District

• FRED O’CALLAGHAN
 JPL/NASA (Retired)

• KATHY CALDWELL
 So Cal Water Dialogue, Coordinator
Webinar Ground Rules

• Technical Difficulties: Use chat feature to let us know

• Asking a Question: Use Q/A feature, type in question, and click send. Questions addressed after presentation.

• Poor Connection: Move closer to your wireless router and turn off other services using bandwidth (e.g. Netflix)

• Audio Muted: Attendee audio on mute by default

• Timetable: Presentation runs apx 60 minutes followed by Q/A session
How to Ask A Question

On the bottom of your screen, click “Q&A”
Type in question and then click send

You can upvote by clicking “thumbs up” icon

Welcome
Feel free to ask the host and panelists questions

Q&A
Open (2) Answered (0) Dismissed (0)

Jack Barker 2:43:31 PM
When is the next webinar?

Eren Yaeger 2:42:44 PM
When are office hours?

Type your question here...
Agenda

• Announcements and Introduction of Speaker
• Topic overview – by Conner Everts
• Discussion
• Dialogue (Q/A) – Led by Dee Zinke
• Concluding remarks
Speakers

Dr. Stephanie Pincetl, Chair, Environmental Science and Engineering, UCLA Institute of the Environment and Sustainability

Dr. Erik Porse, Research Engineer, Office of Water Programs, Sacramento State University and Assistant Adjunct Professor, California Center for Sustainable Communities at UCLA
The 21st Century of Water in Southern California: Living Within Our Means

Erik Porse
Research Engineer, Office of Water Programs at Sacramento State
Assistant Adjunct Professor, UCLA Institute of the Environment and Sustainability

Stephanie Pincetl
Professor, UCLA Institute of the Environment and Sustainability
Director, California Center for Sustainable Communities

Southern California Water Dialogue | 27 April 2022
Some Themes for the 21st Century

• Resilience, reuse & circularity

• Equity and efficiency

• Solutions beyond technology

• “Complex”, not “complicated”

• Adaptation

Photo Credits: Belboo/Flickr, DWR
Capacity, Connectivity, and Performance

• Increasing capacity or improving connectivity does not necessarily result in better performance

 • Braess’s Paradox: Mathematician Dietrich Braess demonstrated that adding roads can result in slower overall traffic speeds (1968)

• In a system with many self-acting participants, adding more connectivity may not result in the best solution
Changing Water Systems in Los Angeles

Future L.A. Water Flows With More Local Sources

- Atmosphere
- Water Agencies
- Infrastructure
- Landscapes
- Aquifers
- Discharges & Outflows (to Ocean)
- Reuse

Evapotranspiration
Precipitation
Pumping
Managed Recharge
Direct Use
Imported Water

Recharge
Reducing the “Footprint” of Urban Water

• Living within means: Changing value structures and tracking data

• Strategies:
 1) Track inputs and outputs across linked water systems
 2) Reduce demand and reliance on imported sources
 3) Diversify and democratize water needs
 4) Boost local water resources
 5) Reuse and recycle as much as possible

Adapted from: Jonathan Rose (2016), The Well-Tempered City.
Tracking Flows: Local Water Reliance in L.A. County

Artes: A Simulation/Optimization Model for L.A. County Water

Artes Network Model

Demand: Reducing Water Use

Regional Target:

80 – 100 gallons-person-day of total water use

Future demand projections must include drought and on-going conservation.

Map Sources: SWRCB Water Conservation Reporting Tool, Pacific Institute
Demand: Landscape Transformation

Turf Replacement in LA County: 2014/15 Program

Outcomes of the 2014-15 MWD program

• Replaced 15.3 million sq-meters of turf
• Post-replacement landscapes had many land cover types
• Some evidence of “neighbor effects”
• Need longitudinal studies

What Did Replaced Yards Look Like?

Google Street View

1. Artificial turf
2. Bare ground
3. Gravels
4. Woodchips

5-1. Evenly-spaced plants w/Wch
5-2. Evenly-spaced plants w/Grv
6-1. Clustered plants w/Wch
6-2. Clustered plants w/Grv

7. Shrubby plants
8. Lawn

Supply: Reducing Imports and Boosting Local Sources

Model results: The “cost-effective” supply portfolio with 90 gallons-person-day

Average Annual Supplies, by Volume

- **Indirect Stormwater Capture**
 - Historic: 0
 - Modeled: 200 (43%)

- **Reuse**
 - Historic: 0
 - Modeled: 100 (16%)

- **Direct**
 - **Imported**
 - Historic: 600 (43%)
 - Modeled: 400 (37%)
 - **Groundwater**
 - Historic: 600 (43%)
 - Modeled: 400 (37%)

Recharge groundwater with stormwater and recycled water

Recycled water substitutes for imported water, but “lose a bit” each time

Import water during only “wet” years to reduce effects of imports

Diversifying and Democratizing Water Management

We can better utilize groundwater through broader access & environmental protection

Modeling groundwater exchange pool use to meet demand.

With no imported water, retailers need exchanges & restructured rights

Water Reuse and Adaptation

Integrated planning for dynamic system changes

Modeling scenarios show that wastewater treatment plants receive less influent

Red: Modeled, Blue Circles: Historic
Full-Cost Accounting Across the Urban Water Cycle

Not the cost of a supply “source”, but the cost of a supply “cycle”

Institutional Reforms

<table>
<thead>
<tr>
<th>Supply Train</th>
<th>Estimated Cost ($/ac-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported Water for Supply</td>
<td>$1,476-$1,790</td>
</tr>
<tr>
<td>Imported Water for Recharge</td>
<td>$1,325-$1,639</td>
</tr>
<tr>
<td>Groundwater Pumping</td>
<td>$739</td>
</tr>
<tr>
<td>Existing MAR</td>
<td>$995</td>
</tr>
<tr>
<td>Proposed New MAR</td>
<td>$1,110-$2,727</td>
</tr>
<tr>
<td>Indirect Potable Reuse</td>
<td>$1,551-$2,641</td>
</tr>
<tr>
<td>Non-Potable Reuse</td>
<td>$556-$1,646</td>
</tr>
</tbody>
</table>

Comparing current and future cost ranges:

What are the life cycle costs of the whole urban water cycle?
Strategies for “Living Within Means”

- Maximize use of the groundwater basins
- Reduce demand and imports
- Landscape transformation
- Behavioral/social change in water conservation
- Full-cost accounting across the urban water cycle
- Distributing infrastructure: Block- and district-scale projects
Beyond Institutional Boundaries

Future creative solutions to reduce water consumption will increasingly span institutional boundaries

• Planning across sectors with life cycle costs

• Food waste and embedded water?

• Energy and Ecosystem-Returns On Investments (EROIs)?

Photo Credits: Yale360, The Guardian
Welcome to Southern California!

• A century of imported plants and gardening aesthetic made possible by unlimited water has led to landscaping heavily dependent on imported water.

• While arguably expressing a unique southern California style, it has also overridden place, and is a legacy of White migration from the East, importing a preference for ‘green’ landscapes.

• A shift in outdoor landscaping will connect us to where we live: a chaparral ecosystem, punctuated by trees, full of variety, life and color.
Landscape change is essential to live within our water supplies

• Learning to live within the region’s water regime knits us with where we live, water parsimony in the summer, sufficiency in the winter when it rains.

• Plants here are adapted to precipitation extremes and heat. Like plants in the East that drop their leaves in the winter, plants here lose their leaves in the summer, or they shrivel, to plump back up with rain. They are adapted.

• Spring is green and vibrant, summer is gray, yellow, brown, odiferous and crackly – these are our seasons.
But, no change is easy, and this one is not either

• Lawns are ubiquitous
 • They are not fussy and grow in sun and shade, over and under watered, on all kinds of soils and slopes
 • They are easy to maintain and whole armies of maintenance crews have the equipment to do so – largely gasoline powered mowers and blowers that are polluting
 • A whole infrastructure of lawn ‘health’ exists as well: fertilizers, pesticides, herbicides, much of which is equally carbon intensive and gravely poisonous

• Native plants are all about location:
 • The soil, slope, the sun or shade, the watering regime
 • They are pickier, but when happy, endure extremes
 • They are intolerant of supplements and chemicals, need no mow and blow
 • They reduce our Earth impacts
The landscape industry

• Is not equipped to support – yet – this shift
 • Nurseries do not carry natives, by and large
 • Nurseries thrive on volumetric sales of easy to grow and maintain plants
 • The knowledge about natives is not there
 • The seed stock is scant, especially if you want to plant the species varieties that are local to that specific place, and thus historically adapted
 • The yard maintenance industry will have less work and the products will not be needed: less fertilizer, pesticide, herbicide sales, less irrigation equipment and more
 • And the labor force that goes out daily is not knowledgeable about native plants and will be less busy with lower maintenance natives
• Changing landscapes costs money and/or time.
• Only in wealthier neighborhoods is this less of a burden.
• Wealthier neighborhoods are the ones who have the highest water use so change should start there.
Finally: landscape change means a new aesthetic, new habits, a learning about where we actually live.
Some Existing Examples in Los Angeles

Thank you to Theodore Payne Foundation for the photographs
The front creek bed is a place for hanging & lovely rest in a variety of simple &
Arlington

Instead of designed and non-native trails. Our prostrate non-native that rewa
We start by showcasing the former tree planter turned into a manzanita. The space is converted into a shady spot in the garden.
Examples of City Parks in Dry Climates

San Diego, Seville, Los Angeles, Casablanca. . . .
Mariachi Plaza
Links

California Center for Sustainable Communities
https://www.ioes.ucla.edu/ccsc/

Model Source Code and Data
Available on Hydroshare

Contact
eporse@ioes.ucla.edu
spincetl@ioes.ucla.edu

Thanks to:
Question and Answer
How to Ask a Question

Click “Q&A” on the bottom of your screen
You can upvote by clicking “thumbs up” icon

Type in question and then click send

Welcome
Feel free to ask the host and panelists questions

Type your question here...
Next
Southern California Water Dialogue Webinar

Wednesday, May 25, 2022
12:00 – 1:30 pm

Your feedback on today’s meeting is important to us. For the next ten minutes, you can use the Zoom Chat feature to send us any comments.

Socalwaterdialogue.org